WHITEHEAD’S METHOD OF EXTENSIVE ABSTRACTION
F.A. SHAMSI*

In ordinary parlance as well as in mathematics we have both inter-
vals of space and (magnitudeless) points such that the extremities of some
intervals, viz., the line-segments, are points. Now, there are three prima
facie possibilities with regard to the question of primacy between inter-
vals and points: (i) that the points are given and the intervals arise from
them in some way (such as by summation or fluxion); (ii) that the inter-
vals are given and the points arise from them in some way (such as by divi-
sion or abstraction); and (iii) that both intervals and points are given
independently of each other though certain relations bold between them
as of necessity.

Euclid adopted, and most of us adopt, in actual practice, the third
alternative. But, apart from defying Ockham’ razor in a directional
analysis of geometry, it involves an impossibility: if both intervals and
points are defined completely independently of each other then no rela-
tions can hold between them as of necessity, and if certain relations do
hold between them as of necessity then both of them are not definable
completely independently of each other. Mathematicians were therefore
obliged to choose either the first or the second alternative. They have
adopted the first one, and Dedekind and Georg Cantor are taken to have
actually derived lines, surfaces and solids from points and to have shown
that, e.g., line-segments are nothing but nondenumerable sets of point-
sets which satisfy the linearity conditions.

So far as | know, no one has adopted the second alternative with the
possible exception of Alfred North Whitehead (1861-1947). W hitehead
adopts arather novel position —an amalgam of the firs* two alternatives:
he takes the interval (the four-dimensional spatio-temporal event or region
which is an ingredient of the physical world) as the most primitive
geometrical element (in an extended sense, in a sense in which spatio-
temporal intervals are geometrical elements) and derives what he calls a
‘point’ (which had better been called ‘point-instant’instead), but goes on
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to derive what he calls ‘lines’, ‘surfaces’and ‘volumes’ (which are one-three
and four-dimensional spatio-temporal intervals). His position is perhaps
best described as the first (i.e., mathematicians) alternative with this dif-
ference that as an empiricist he took the four-dimensional region as
epistemologically more primitive than the point or point-instant. He may
therefore he taken to have put himself to the task of abstracting his ‘point’
from the (undefined) notion of region (embedded in sense perception)
with the help of the (undefined) relation of extensive connection
(presumably also embedded in sense perception) and a number of self-
evident propositions, and thus of endeavouring to establish geometry on
a more secure epistemological foundation than had Euclid or even modern
mathematicians.

In Section | we presentabriefsummary of Whitehead’s method, and
in Section Il we defend the Method against Professor Griinbaum’s objec-
tions, which serve as a useful introduction to Section IIl where we
endeavour to show that the Method fails in deriving the point from the
region, in deriving the line, surface and the volime from the point, and
in defining the straight line, plane and the three-dimensional ‘“flat’ locus.
However, in Section IV we argue that, taken as an endeavour to adopt the
second alternative, the Method was a pioneering, very useful, and highly
commendable effort.

W hitehead has presented his method of extensive abstraction in four
of his works:*

1. “Latheorie relationiste de I’Espace”, Revue de metaphysique et de morale,
XXII (1916), pp. 423-54.

2. An Enquiry Conceming the Principles ofNatural Knoivledge, Cambridge,
1919, Part 3.

3. The Concept of Nature, Cambridge, 1920, Chapter 4.
4. Process and Reality, New York, 1929, Part 4.

1 In his preface (written in 1914) to Our Knoivledge of the Extemal World (first published

in 1914, revised in 1926), Bertrand Russell says that he owed his definition of points and
the treatment of instants to YVhitehead and that what he had said on those topics in that
book was in fact arough preliminary account of the more precises results which YVhitehead
was giving in the fourth volime of their Principia Mathematica. The proposed fourth volime
was never written. However, it is almost certain that Whitehead’s exposition of his Method
in that volime, had it been written, would have been about the same as he has given in the
first two works listed in the text.
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The method presented in ali these works is essentially the same
although there are some differences among them in matters of detail. It
would in itself be of interest to study these differences and to trace the
evolution of Whitehead’sthought on and technique for extensive abstrac-
tion from his Orgariisation of Thought published in 1917 to the Process and
Reality published in 1929. Some scholars have discussed some of these dif-
ferences, but, I am not aware of any detailed study of those differences.
However, in this article we propose to study the essential elements of
W hitehead’s method, since our main purpose here is to evaluate it, and
shall therefore confine ourselves to only one of the four works, Process and
Reality, which is W hitehead’s magnum opus and contains his most mature
attempt at extensive abstraction.

W hitehead takes region and extensive connection as indefinable terms
and explains his usage concerning these two terms from which we learn
that the former is at least a four-dimensional continuum and the latter
means any kind of relation that any two regions can have to one another.2
He first defines the concepts of inclusion or whole-part relationship,
overlapping, dissection of a region (i.e., a set of mutually exclusive and
collectively exhaustive parts), intersect of two regions (i.e,, aregion in which
two regions overlap), unique and multiple intersection of two regions (if
there are two or more non-contiguous intersects of two regions then the
two regions have multiple intersection and if they have only one intersect
then there isunique intersection), externally connected (i.e., contiguous),
tangentially included (i.e., so contained that the part shares in the ‘sur-
face’of the whole) and non-tangentially included (i.e., so contained in the
interior that the part in question is completely surrounded by another
part of the given region), and then introduces the notion of an abstractive
setas a set ofregions any two of which are such that one of them includes

the other non-tangentially and there is no region whatever which is in-
cluded in every member of the set.3Thus, he presents the notion of con-
vergence to a geometrical entity-point, line and, surface without postulating
any of these entitles. That is, we begin with aregion R of any size and then
take as a member a region M which is non-tangentially included in the
given region, i.e., a part of region R which is surrounded on ali sides by
another part of R having some thickness so that the upper surface of M

2 A.N. Whitehead, Process and Reality (corrected edition, edited by D.R. Griffin and DW.
Sherburne), New York, 1978, Paperback ed., 1979, pp. 294, 301 and 304.
(Hereinafter the 1979 paperback edition will be referred to as PR.)

3 PR, pp. 295-98 (Definitions 2 to 10).
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Is not connected vvith any region not included in. By taking smaller and
smaller such parts of R as the members of our set, we obtain a setofregions
none of which is the smallest member and the regions converge to a sur-
face, line or a point. (Even in the case of converging to a region, that is,
to a three —or a four— dimensional continuum, when we begin with a
hollow region, it is clear that such aregion isnota member of the set but
lies beyond ‘ali’the members of the set,just like the x + Ith (omega-plus-one
th) member of an infinite convergent series, the members of the set ap-
proaching it more and more closely as we move down the converging end
of R.)

Whitehead introduces the notion of one abstractive set covering
another abstractive set (i.e., that of every member of one setincluding some
member of the other) and that of ‘equivalence of abstractive sets’, or, in
ordinary parlance, the notion of sameness of convergerice.4 A geometrical ele-
ment is now defined as a complete group of equivalent abstractive sets,
equivalent to one another and to no other abstractive set outside the
group.5 Then the notion of one geometrical element being incident in
another geometrical element is introduced: when every member (abstrac-
tive set) of a geometrical element a covers every member of another
geometrical element b, but a and b are not identical then b is said to be
incident in a (i.e., to be contained in a).6 And now we reach the ‘point’
as a geometrical element in which no other geometrical element is inci-
dent.7Whitehead points out this definition is to be compared with the
Euclidean definition of a point as that which has no part.8

Now the notion of a geometrical element being prime in reference to
assigned conditions is introduced by which W hitehead means that no other
geometrical element satisfying those conditions is incident in the given
geometrical element.9 Whitehead points out that a point is an absolute
prime in the sense that no other point or geometrical element can be in-
cident in it.10He is now in a resition to define a segment as a geometrical

4 PR, p. 298 (Defs. 11 and 12).

5 PR, pp. 298-99 (Def. 13).

6 PR, p. 299 (Def. 15). The use of the word ‘identical’ is a slip of the pen; it should have
been ‘equivalent’.

7 PR, p. 299 (Def. 16).

8 Ibid. But this remark should have been given as a separate paragraph by way of an
observation on Def. 16.

9 PR, p. 299 (Def. 16.1). | feel that it should have been numbered 17 instead of 16. 1,
since it is quite independent of Def. 16.
10 PR, p. 299.
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element between points p and g in which p and g are incident and in which
no geometrical element is incident in which also p and g are incident;
p and q in such cases are to be called the end-points of the segment.1l

Y Vhitehead now introduces the notions of a point being situated in a
region and in the surface of a region: a point is situated in any region
which is a member of one of the abstractive sets composing that point,
and a point is situated in the surface of a region x when ali the regions
in which that point is situated overlap with x but are not included in x.12

A complete locus of points can now be defined: A complete locis ofpoints
is a set of points that compose ali the points situated in a region, or in
the surface ofaregion, or ali the pointsincidentin ageometrical element.13
The volime of a region is a complete locus consisting of ali the points
situated in that region; a surface ofaregion isa complete locus consisting
of ali the points situated in the surface of that region; and, a linear stretch
between two end-points is a complete locus consisting of ali the points in-
cident in the segment between those two points.l4 Any complete locus of
points consist of an infinite number of points.15

W hitehead makes an important remark about the Euclidean defini-
tion of a straight line. He says that the weakness of this definition is that
nothing has been deduced from it vvhereas the uniqueness of a straight
segment between two points (i.e., there being one and only one straight
segment between any two points) should be deducible from it. Consequent-
ly, in modern times, as Whitehead points out, a straight line segment has
been defined as the shortest distance between two points, and shortest
distance has itself been practically defined as the line which is the route
of certain physical occurrences. Whitehead tries to remedy this gap in the
classical theory.16

W hitehead mentions a class of oval regions and says that it is to be
defined. The only weapon that he finds for this definition is the notion
of regions which overlap with a unique intersect. He says that evidently
it is a property of a pair of ovals that they can only overlap with unique
Intersection, but, he says, it is equally evident that some non-oval regions

1 PR, pp. 299-300 (Defs. 18 and 19).
2 PR, p. 300 (Defs. 21 and 22).

13 PR, p. 300 (Def. 23).

14 PR, p. 300-301 (Def. 24).

5 PR, p. 300 (Assumption 27).

16 PR, p. 303.
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also overlap with unique intersection. However, he says, the class of ovals
has the property that any non-oval region overlaps some oval regions with
multiple intersection. He admits that a single oval region cannot be deflned
but a class of oval regions can be defined inasmuch as a class can be defin-
ed whose members have to each other and to non-oval regions the pro-
perties ascribed by him to the class of oval regions. Such a class, he says,
will be called ovate.I7

W hitehead proposes a preliminary definition: An ovate abstractive
set is an abstractive set whose members ali belong to the complete ovate
class under consideration.l8He then defines an ovate class of regions as
these which fulfil a certain group of non-abstractive and a certain group
of abstractive conditions. The non-abstractive conditions are: (i) any two
overlapping ovate regions have a unique intersect which also is an ovate
region; (ii) a non-ovate region overlaps some ovate regions with multiple
intersection; (iii) any ovate region overlaps some non-ovate regions with
multiple intersection; (iv) the surfaces of any two externaly connected ovate
regions teach either in a complete locus of points or in a single point; (v)
the surface of a non-ovate regions touches the surface of some ovate region
externally connected with it in a set of points which does not form a com-
plete locus (i.e., the two regions touch in a set of points which does not
comprise a line-segment, surface or volume); (vi) the surface of an ovate
region touches the surface of some non-ovate region externally connected
with it in a set of points which does not form a complete locus; (vii) any
finite number of regions are included in some ovate region (i.e., there is
a sufficiently large ovate region to contain any given finite number of
regions); (viii) if A and B be any two ovate regions such that A includes
B then there is an ovate region C such that A includes C and C includes
B, and (ix) there are dissections of every ovate region which consist whol-
ly of ovate regions, and, there are dissections which consist wholly or partly
of non-ovate regions. The abstractive group of conditions are: (i) there
are ovate abstractive sets among the members of any point; (ii) if any set
of two, or of three, or of four, points be considered, there are ovate abstrac-
tive sets prime in reference to the condition of covering those points; and,
there are sets of five points such that no ovate abstractive set is prime in
reference to the condition of covering those points.9 W hitehead points

17 1bid.
B PR, pp. 303-4 (Def. 0.1).
19 PR, p. 304 (Def. 1).
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out that by reason of the definitions of the abstractive group of conditions,
the extensive continuum in question is four-dimensional.2 An extensive
continuum of any number of dimensions can be defined analogously.2l
W hitehead asks us to notice that the property of being dimensional is
relative to a particular ovate class in the extensive continuum (emphasis
ours): there may be ovate classes satisfying ali the conditions except the
dimensional conditions. He further informs that a continuum may have
one number of dimensions relatively to one ovate class and another
number of dimensions relatively to another ovate class. W hitehead opinies
that the physical laws which presuppose continuity, possibly depend on
the interwoven properties of two or more distinct ovate classes (emphasis
ours).2

W hitehead assumes that there is at least one ovate class in the exten-
sive continuum of the present epoch which has the two groups of
characteristics enumerated above. He selects one such ovate class and says
that ali [further] definitions will be made relatively to the selected ovate
class. He assures us that there being an alternative ovate class is immaterial
to the argument; if there be such an other one, the derivative entities defin-
ed in reference to this alternative class are entirely different to those defin-
ed in reference to the selected class.Z3He now presents the theorem vvhich
iIs going to help prove the uniqueness of a straight segment; if two abstrac-
tive sets are prime in reference to the same tvvo-fold condition of cover-
ing a given group of points and of being equivalent to some ovate
abstractive set, then the two abstractive sets are equivalent.24He offers an
elegant proof.5 It follovvs as a corollary that ali abstractive sets, prime vvith
respect to the same tvvo-fold condition of this type, belong to one
geometrical element.26

We nowv come to the definition of a straight segment. If two abstrac-
tive sets are prime in reference to the same tvvo-fold condition of cover-

2 PR, p. 304.

2 PR, pp. 304-5.

2 PR, p. 305.

23 Ibidi.

24 lbid. (Assumption 2).

5 PR, p. 305 (Proof of Assumption 2). In this proof, however, he says that regions MN
intersect instead of saving that they overlap another slip of the pen. (‘To overlap’ has been
defined but not ‘to intersect’ An intersect has also been defined, but from its definition one
cannot go on ‘to intersect’)

% PR, p. 305.
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ing a given set of two points and of being equivalent to some ovate
abstractive set, then the two sets are equivalent and belong to one
geometrical element; this geometrical element is called a straight seg-
ment.Z7 As can be readily seen, this definition itself shows the uniqueness
of a straight segment. A similar definition is given of a flat geometrical
element: instead of having two, we now have more than two, points.2
Y Vhitehead observes that straight segments are also included under the
designation of flat geometrical elements.2®

Realizing that it may so happen that the same geometrical element
is definable by some sub-set as is defined by a given set of points, YVhitehead
offers a definition and a postulate to meet this difficulty: A set of points
which defines a flat geometrical element is said to be in its lowest terms
when it contains no sub-set defining the same flat geometrical element;
and, no two sets of a finite number of points, both in their lowest terms,
define the same geometrical element.3

Y Vhitehead defines a straight line between two given points as the locus
of points incident in a straight segment between those points.3L (A straight
segment between two given points was defined as a certain geometrical
element. Now, a straight line between two points is being defined as a cer-
tain locus of points.) Similarly a flat locus is defined as the locus of points
in flat geometrical element.2 He relates a given flat locus with a section
thereof through the assumption that if any sub-set of points lies in a flat
locus, that sub-set too defines a flat locus contained within the given locus.38
Now a complete straight line is defined as a locus of points such that (i)
the straight line joining any two members of the locus lies wholly within
the locus, (ii) every sub-set in the locus, which is in its lowest terms, con-
sists of a pair of points, and (iii) no points can be added to the locus without
loss of one, or both, of the characteristics (i) and (ii).3%4

W hitehead defines a triangle as the flat locus defined by three non-
collinear points; these points are the angular points of the triangle.3 A

21 PR, p. 306. (Def. 3).
2 Ibid.
2 Ibid. This observation, | feel, should have presented as a separate paragraph.

0 PR, p. 306 (Def. 4 and Assumption 3).
3 PR, p. 306 (Def. 5).

2 PR, p. 306 (Def. 6).

3B PR, p. 306 (Assumption 4).

3 PR, p. 306 (Def. 6.1).

35 PR, p. 306 (Def. 7).
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plane is defined as a locus of non-collinear points such that (i) the triangle
defined by any three non-collinear members of the locus lies wholly within
the locus, (ii) any finite number of points in the locus lies in some triangle
wholly contained in the locus, and (iii) no set of points can be added to
the locus without loss of one, or both, of the characteristics (i) and (ii).%
Similarly, a tetrahedron is the flat locus defined by four non-coplanar
points which are the corners of the tetrahedron.3/ We now come to the
definition of a three dimensional flat space. It is a locus of non-coplanar
points such that (i) the tetrahedron defined by any four non-coplanar
points of the locus lies wholly within the locus, (ii) any finite number of
points in the locus lies in some tetrahedron wholly contained in the locus,
and (iii) no set of points can be added to the locus without the loss of one,
or both, of the characteristics (i) and (ii).38

It isimperative at this stage to point out that Whitehead’s terminology
and Method both are at first sight confusing, but a little reflection suf-
fices to dispel the confusion.

W hitehead takes the term ‘region’more or less as an indefinable term
and explicates his use of this term by saying that regions are the relata
which are related to one another by the [primitive and undefined] rela-
tion of 'extensive connection’, or, in other words, as the kind of things bet-
ween whom this relation holds. He also says that the volime is the inside
ofaregion. He further says that in the application of his theory of exten-
sion ‘to the existing physical world of our epoch, volumes are four- dimen-
sional, and surfaces are three dimensional’ From these statements it
appears as if Whitehead takes the notion of a four-dimensional spatio-
temporal region as primitive, and seeks to define or derive the notion of
a magnitudeless spatio-temporal element which he calls a point because
of its basic similarity to a point of space. Hence, it seems that his ‘abstrac-
tive sets’ consist of an infinitude of four-dimensional spatio-temporal
regions none of which isincluded in every other member and one of any
two members is non-tangentially included in the other. But, Whitehead
also says, ‘By reference to the particular case of three-dimensional space,
we see that abstractive sets can have different types of convergence. For
in this case, an abstractive set can converge either to a point, or to a line,
or to an area’. This confuses the whole issue and one is at a loss to decide

% PR, p. 306 (Def. 8).
37 PR, p. 306 (Def. 9).
B PR, p. 306 (Def. 10).
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whether in a given context the term ‘region’ means a three-dimensional
spatial region or a four dimensional spatio-temporal region, and whether
the point derived from itisapoint of space or an indivisible, magnitudeless
spatio-temporal element.

When the matter is pondered, the realization comes that W hitehead
takes his Method as ageneral method of abstraction in which one can begin
with a ‘region’ of any number of dimensions, say n, and arrive at an in-
divisible magnitudeless element of the appropriate kind, and then from
it build up the elements of one to n-1 dimensions the element of n-1 dimen-
sions being the ‘surface’ of the given type of region.

It may also he pointed out that Professor Adolf Griinbaum’s criticism,
which we are going to discuss presently, is quite general and is applicable
to both the abstraction of a point from the three-dimensional spatial region
and the abstraction of a ‘point’ the n-dimensional ‘region’

However, in what follows, we are going to assume that a region is a
three-dimensional spatial region, and, hence, that a surface is a two-
dimensional spatial area, a line is a one-dimensional spatial extension,
and, a point is a point of space. This will in no way vitiate the following
discussion. For, whatever is seen to be true of the endeavour to abstract
the point from the spatial region will hold paripassu of the attempt to
abstract the ‘point’ from the four-dimensional space-dme ‘region’

* * %

Professor Adolf Griinbaum, one of the most notable philosophers of
Science of our times, subscribes to the first of the three views regarding
the relation between the points and intervals of space, viz., that the points
must be taken as given and the line-segments must be taken as nothing
but non-denumerable sets of points which satisfy the memority conditions,
and other geometrical entities as non-denumerable sets of points ordered
in certain other ways. He is not happy with the idea of treating regious
as given and seeking to abstract or derive the point from them, and, in
a very influential article, he endeavours to show that W hitehead’s attempt
to derive the point from the region ended in a failure. On the contrary,
Professor Grinbaum holds, Dedekind and Georg Cantor have succeeded
in deriving the interval from the point and, having satisfactorily resolved
the problems associated with the concept of the actually infinite have
shown that the intervals are continua of non-denumerable sets of points.
He also holds that Zeno’s paradoxes stand resolved by these theories of
infinity and continuity, provided that continuousness is not identified, as
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Russell does, with mere compactness (there being an infinitude of points
between any two points) which yields only a denumerable set of points
having zero magnitude.

Professor Grinbaum holds Whitehead’s method to have been a failure
on two grounds. According to him, (i) the convergence of the abstractive
sets or classes is fatally ambiguous,®¥and (ii) W hitehead’s method is vitiated
by one of Zeno’s arguments.40

(@) Professor Grinbaum’s first ground is valid in so far as W hitehead’s
earlier works, the Enquiry and the Concept are concerned. In those works,
he had taken the expression ‘A extends 6ver B’to mean that B was a pro-
per part of A. Now, if we take smaller and smaller (proper) parts of A as
the members of an abstractive ‘class’, then, without appealing to the no-
tions ofa point, line, surface or volume, it cannot be determined as to what
kind of an entity it is to which, does a given abstractive ‘class’ converge.
For example, if we take an event E and wish to take out parts of E to con-
verge to a line, but take out parts Ex E2 E3.. such that the ‘surfaces’ of
Ei1, E2 E3.. have one and only one point in common, then the abstractive
‘class’ so obtained cannot converge to a line. Thus, to what an abstractive
class converges was not determinable. Whitehead head had done nothing
to forestall this ambiguity of convergence. And this ambiguity was fatal
to his Method, since it entirely depended on the notion of sameness of
convergence. In his Process and Reality, YVhitehead removed this ambigui-
ty by distinguishing between tangential and non-tangential inclusion and
basing the notion of an abstractive set on that of non-tangential inclusion
or non-tangential whole-part relationship. No two members of an abstrac-
tive set can now have a common outer surface or acommon line-segment
or point on their enter surfaces.

However, Professor Grunbaum holds that the Method even as
presented in PR is beset by ambiguity of convergence. He asks us to take
two distinct but neighbouring points such as x = iO100 It is clear that there
Isnon-denumerable infinity of other points betvveen the two chosen points.
Now, Professor Grinbaum asks YVhitehead to teli us (i) whether we know
from sense perception that there exist two different abstractive classes defin-
ing those two points, and, if the answer be yes, to teli us (ii) as to precisely
how their particular difference is certifiable by sense perception. Professor

39 A. Grinbaum, “VVhitehead’s Method of Extensive Abstiaction”, The BritishJournalfor
the Philosophy of Science, 1V, No. 15 (1953), pp. 215-26; see, pp. 219-26.
4 Ibid., pp. 216-19 and 222-26.



1220 F.A. SHAMSI

Grinbaum, it is submitted, does not see that a circularlity is involved in
his rhetorical question, and that he is raising an irrelevant issue. He first
asks us to assume that there are two points and then demands that their
difference should be certifiable by sense experience. To be able to demand
that the difference between two points should be demonstrable in sense
experience, he would have to point out two perceptible things which can
be represented by x =0 and x = 10100 If he had succeeded in doing that,
then Whitehead too would have succeeded in pointing to the perceptible
difference between those two things. However, the point is that empiricism
does not demand that everything we talk about should be perceptible. It
would suffice if what we talk about can be brought into some intelligible
relation with what is observable in sense perception. Hence, it is not re-
quired that we should be able to distinguish between two such points in
sense perception so long as some rational principle can be laid down for
the purpose of distinguishing the one from the other. If it were the case
that we are unable to distinguish between two abstractive sets of regions,
A and B, converging respectively to points x =0 and x = 101000 then indeed
W hitehead’s method would have been fatally ambiguous and would have
been a total failure on that account. But we see that B would have members
(in fact, infinitely many members) which do not contain point x =0 (that
iIs, some members of B would not include any region which is a member
of some set of regions that would ordinarily be said to converge to point
X = 0).

However, it seems to me that the convergence of the abstractive sets
Isambiguous in one case, namely, in the case of a set that is supposed to
converge to a point but which may only converge to a surface. That is to
say, Whitehead does not provide a criterion to distinguish betvveen those
abstractive sets that would ordinarily be said to converge to a point and
those that would ordinarily be said to converge to a surface.

Let there be an abstractive set that would ordinarily be said to con-
verge to a sphere s. Let point p be the centre of sphere s. Now take a large
sphere R concentric with and containing s. Spherical parts of R having
p as their centre and larger than s would then constitute an abstractive
set converging to s. Let us cali this abstractive set A. It is clear that s is
not a member of A: if we construct a set having as members R, R1, R2
R3..such that p is the centre of each of these spheres and Ri is contained
in R, R2in R} R3in R2 and so on, and such that each member is larger
than s, then we have an infinite convergent series whose first member is
R and sis in the nature of the (omega-plus-one th) term, i.e., s is the ‘limit’
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of this series. We now take another abstractive set of regions B such that
every member of B contains some member of A and similarly every
member of A contains some member of B. It follows that B must also con-
verge to s, for, otherwise, some member of A would fail to contain any
member of B or some member of B would fail to contain any member of
A. Equivalence of two abstractive sets (in W hitehead’s sense) ensures sameness
ofconvergence. Now, our objection is that having chosen the abstractive set
A (and, consequently, set b as well as the ‘complete’ group of abstractive
sets equivalent to A and to one another and equivalent to no other abstrac-
tive set outside the given group), if we were to assume that sphere s does
not exist —that is, if we assume that R is a hollow sphere— then
W hitehead’s method partially fails, for now abstractive set A can only be
said to converge to a surface, the surface of sphere s, but, Whitehead’s
method does not ensure that R must not be hollow, VVhitehead simply
assumes that a region (or solid) is not hollow. In other vvords, W hitehead
should have made sure that something hollow cannot be taken to be a region
but he failed to do so. However, this is not a crucial failure. The defect
can be remedied by defining agap and postulating that there are no gaps
in any region. For example, Whitehead could have added two propositions
at the end of Section Il of Chapter IlI, Part IV (p. 297 of 1979 paperback
edition) as follows:4l

Definition 9 A. A region A is said to have no ‘gap’ in it when there
are no two regions B and C such that A and B are a dissection of C, and

C includes B non-tangentially.

Assumption 18 A. By ‘region’we shall henceforth mean aregion that
has no gap in it. This assumption is merely a convenient arrangement of
nomenclature.

It may moreover be pointed out that this was not a very important
matter for Whitehead. For, his method was to jump from a (four-
dimensional) region to a ‘point’and build up a line, surface and solid from
‘points’ A group of abstractive sets that is a ‘point’ can be unerringly

4 I had originally worked probably with the New York, 1929 edition, and, it seems, it
did not have the explanatory paragraph at the end of Section IV that we have in the 1979
corrected edition. In this paragraph Whitehead says that ‘a certain boundedness is required
for the notion of a region... The inside of a region... has a complete boundedness denied
to the extensive potentiality external to it... Wherever there is ambiguity as to the contrast
of boundedness between inside and outside, there is no proper region. This statement should
have come in Section | of Chapter Il. Even so, a further clarification should also have been
made, that a region as thus conceived cannot be hollovv from vvithin, or have holes in it.
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distinguished from any other group that is another ‘point’ or is a line,
surface or solid, which is what alone matters.

2 According to Professor Grinbaum, Whitehead’s method is vitiated
by Zeno’s mathematical paradox of plurality. The argument, in its details,
Is somewhat as follows:

Part of the edifice of contemporary mathematics rests on the concep-
tion that a spatial interval is literally composed of unextended point-
elements. But, obviously, no finite set of point-elements can add up to a
positive interval, and as argued by Zeno (and demonstrated by Professor
Grinbaum), not even a denumerably infinite set of point-elements can
constitute a positive interval. A positive interval can only be constituted
by a non-denumerably infinite set of point-elements. For Whitehead, a
pointis a (complete) group of abstractive sets of regions. Hence, metrical
consistency demands that there should be a non- denumerable infinity
of (groups of) abstractive sets of regions. Now, W hitehead’s programme
of epistemological reconstruction of geometry is that of beginning with
something perceptible and by a process of abstraction arriving at things
which are the termini of sense avvareness. Hence, W hitehead’s programme,
In conjunction with the demand of metrical consistency, involves that there
should be a non-denumerable infinity of abstractive sets and that these
sets should be among the termini of sense awareness. Empiricists deny
the existence of something actually infinite. Even if it is assumed that the
existence of something actually, but only denumerably, infinite is certifiably
by sense avvareness, it is evident that the notion of actually infinite sets
having a cardinality exceeding aleph-null, i.e., the notion of non-
denumerably infinite sets, would inexorably defy encompassement by the
sensory imagination. Hence, Whitehead’s empirical programme is seen
to be at variance with the demand of metrical consistency.

Professor Grinbaum expects this argument to demolish both
W hitehead’s method in particular, and the empiricist’s aspiration to reduce
non-empirical notions to empirical ones in general. Insofar as the latter
expectation is concerned, it is quite unjustified. In the first place, an
epistemological reconstruction of geometry along empiricist lines would
begin by removing of geometry along empiricist lines would begin by
removing from geometry the conception that supports part of the edifice
of contemporary mathematics, viz., that an interval is constituted of
magnitudeless elements. As such, no question of certifying the existence
of a non-denumerable infinity of anything in sense experience or in
anything else at ali arises. In that case, the empiricists have of course to
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evolve points and instants, mass-points and particles, from phenomena
that are perceptible, and vvould have to demonstrate that no illogicality
was involved in such derivation. We believe that the empiricists’ pro-
gramme can be executed even though Whitehead may not have succeed-
ed in evolving points from regions. (The notion of a point, we believe, is
a rational notion. Hence, there must be a non-circular process through
which human intellect arrived at the notion of a point. We have only to
rediscover it consciously.) We are thus only left with the question of this
argument’s particular application to Whitehead.

Now, in relation to Whitehead, let it be noted that the argument in-
volves both his derivation of the ‘point’ from the region and his deriva-
tion of the ‘line’, ‘surface’ and from ‘points’ Insofar as his derivation of
the point is concerned, this does not involve non-denumerable infinity,
at least directly. Hovvever, if a spatial interval is constituted as modern
mathematicians suppose it to be constituted. Then the ‘complete’ group
of equivalent sets that is a geometrical element must have a non-
denumerable infinity of members. But this should present no insurmoun-
table difficulties since the abstractive sets vvould overlap with the members
of the other sets. An abstractive setisnot itselfnon-denumerably infinite,
and, in fact, Whitehead asks us to think of them as a series of discrete
members even though every one of them non-tangentially contains ‘ali’
members coming after itself.

Insofar as Whitehead’s derivation of the ‘line’ ete., from the ‘points’
Is concerned, it is true that he does not explicity lay it down that only a
non-denumerable infinity of points can constitute a line-segment, surface
of aregion, or aregion. But he does not lay it down either that a positive
interval is constituted only of a denumerable infinity of ‘points’ Rather,
since he uses the expression ‘ali points’he may be taken to have supposed
a complete locus of points to be constituted of a non-denumerable infini-
ty of points. Hence, if it be correct that Prof. Grinbaum’s view succeeds
In meeting Zeno’sargument in quesdon, then Whitehead too may be taken
to have succeeded in meeting Zeno’s argument. As for the claim that the
existence of anon-denumerable infinity of abstractive sets. (Professor W.
Mays says that it is by no means clear that Whitehead intended in
epistemological reconstruction of geometry along empiricist lines, and,
S. Nicod suggests, the Method may be considered after the fashion of an
abstract mathematical model.£2 Had W hitehead had any such reconstruc-

L W. Mays, Philosophy ofWhitehead, 1959, reprint, New York, 1962, pp. 113-14: “VVhitehead
does not always make it clear whether his method is to be taken as an algorithm or as an
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tion at heart, he could hardly have tried to define lines, surfaces and
volumes in terms of points. However, it is clear that he did not like to take
the point as (intuitively) given and that he endeavoured to bring it into
a rational relation with something sensible. Even so, this does not commit
W hitehead to having a non-denumerable infinity of abstractive sets in
perception.)

* * *

In any popular exposition of Whitehead’s method, it is inevitable that
the words “point”, “line”, and “surface” should occur before his defini-
tions thereof occur, just as we had to do earlier. (Whitehead himself found
it necessary, in an aside, to talk of convergence to a point before he had
defined the point.43) This leads to the objection that a circularity is in-
volved in the method. But, the fact is that the apparent circularity is in-
volved only in the exposition of the method, not in the method itself. The
definition ofa point given by Whitehead does not presuppose the notion
ofapoint: apointisageometrical elementin which no other geometrical
element is incident, or, in other words, a complete group of equivalent
abstractive sets in vvhich no other complete group of equivalent abstrac-
tive sets in incident. And, as argued by Broad and Stebing, there is no cir-
cularity in popular expositions either, since ‘convergence to a point’is itself
understood in terms of regions and their relations.44 (I am not happy wvith
the actual defence through. But, we shall not argue this point since it relates
only to popular expositions and not to Whitehead’s method itself.)

Does our discussion in Section Il lead to the conclusion that
W hitehead’s method is a sucess? We are afraid, it is not so. Rather, the fact
is that his method does not succeed in abstracting the point from the
region, i.e., in defining the term ‘point’in terms of regions and extensive
connections betvveen them non-circularly.

Before we present the grounds for this statement, it is required to be
very clear about one point, viz., that an abstractive set does not converge to
anything, although it is quite natural for us, vwho assume that they knovv

exact description of some actual process of convergence... Nicod... suggested that VVhitehead’s
contribution could be taken as the c onstruction of a pure geometry rather than as an analysis
of the real World.”

43 Eg., PR, p. 298.

4 C.D. Broad, Scientific Thought, reprint, London, 1952, pp. 45-47; L.S. Stebbing, A Modem
introduction to Logic, reprint, London, 1958, pp. 446-52, esp. pp. 450-51.



WHITEHEAD’S METHOD OF EXTENSIVE ABSTRACTION 1225

what a point line or area is, to assume that an abstractive set must con-
verge to a surface (an area), line or point.

Let us suppose that we select an abstractive set A by taking a large
sphere s having point p at its centre and then an infinity of smaller and
smaller spheres each having p at its centre. We see that the abstractive
set Alis converging to a point, and that the point to which the set ofregions
is converging is p. But, we do so only because we know (or suppose that
we know) that there are points, that points are contained in regions, and
that any given member region of A contains p as its centre. If we ask a
boy, who has not yet been imparted the idea of a point, line or area, but
who understands what aregion is, to go through A starting from s, he will
see that, there being no region at which he will be allovved to stop, he will
have to ever remain engaged in the wearisome activity of mentally enlarg-
ing an unimaginably small region and taking a non-tangentionally includ-
ed part of it for the same operadon. But, even if he happens to select the
spheres we had selected, he will not see spheres as converging to a point.
As far as logic is concerred he will not be able to reach p, lost as he is in
an infinity of operations. For the same reason, his attention will not come
out of the regions and arrive ata point. An intuitivejump alone can enable
him to arrive at the point. In mathematicians terminology: it is impossi-
ble to arrive at the point by taking a line and halving it into two, then halv-
ing one of the halves, and so on ad infinitum, because the point is in the
nature of the w+ 1 (omega +one) th term which remains at an infinite
distance from any term no matter how far that term may be from the first
term. Similarly, p is the w+ 1th term and cannot be arrived at by going
through the concentric parts ofs. In fine, the member regions ofan abstrac-
tive set become smaller and smaller indefinitely, but do not converge to
anything in the sense of reaching or arriving at the w+ 1th term, or in the
sense of moving towards something ultimate, for, there is no logical means
whereby it can be established that we are moving towards p, even though
we may in fact be moving tovvards p. So far as logic is concerned, there
may not be such a thing as a point, and, as far as the boy in question is
concerned, there is no such thing as a point. The abstractive set ofregions,
if it were meant to convey the idea of a point, line or area, would utterly
fail to convey such an idea.

It may be mentioned that at least in theory, YVhitehead does not assume
that the abstractive set should be supposed to converge to a point, ete.
Hence, the fact that an abstractive set does not converge to a point, line
or area, IS no objeetion to YVhitehead’s method. The point, line or area
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is not defined by Whitehead as that to which a (complete) group of equivalest
abstractive sets converge, but as that group of abstractive sets itself. In short,
his method is based quite logically on sameness ofconvergence, or in his own
terminology, on equivalence abstractive sets, and not circularly on that of
convergence to a point, ete.

If one were to seek to take advantage of this fact and to hold that
Y Vhitehead’s method is a failure because the equivalent abstractive sets
do not converge to a point, line or surface, he vvould only be exhibiting
his failure to understand the Method. In the face of this objeetion,
W hitehead could have legitimately said that he did not at ali postulate
the entities ordinarily called point, lines, ete., and that he had no use for
them and that it sufficed for his purpose that two abstractive sets had
sameness of convergence even though neither converged to anything. If Pro-
fessor Grinbaum vvere to insist that this vvould affect the continuity of
the continuum, that if there vvere no surfaces, lines and points (as we
understand these terms) then there vvould only be diserete regions, then
W hitehead could say that he did not have to begin by assuming that spatio-
temporal continua vvere continuous in the sense of there being boundaries
betvveen regions and that it vvould suffice for his purpose if regions vvere
continuous in the sense that regions vvere contiguous and had no gaps
in them. What is important for Whitehead is that the ‘point’ as defined
by him does ali the vvork that a point is required to do in geometry.
Hovvever, it seems to me that (apart from the question vvhether VVVhitehead’s
point can do for our point) the fact that two abstractive sets have sameness
of convergence but neither can be said to converge to anything (vvithout
already assuming that there are points, lines and surfaces and thus begg-
ing the question) presents at least an infelicity. (And this infelicity turns
Into a veritable perplixity vvhen in popular expositions ‘convergence to
a point’ete., is glibly mentioned: convergence to a point or ‘convergence’
toacomplete group of equivalent abstractive sets in vvhich no such other
group is incident, and if the latter then vvhat does ‘convergence to a cer-
tain group of abstractive sets’ mean?)

The grounds on vvhich we hold that the Method does not succeed in
deriving the point from the region are as follovvs.

D W hitehead’s notion ofaregion demonstrably presupposes the no-
tion of a surface, a notion supposed to be defined in terms ofregions, and,
as such, the Method involves a circularity.

Whitehead begins vvith the notion of a region. He takes regions to
be the relata of the (primitive) relation of extensive connection, or the
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sort of things among which the relation of extensive connection holds,
and then seeks to define the notions of a point, line and surface. At the
initial stage, the word “surface” is supposed to have no meaning, and we
are supposed to have no notion of a surface, only that of a region. But,
W hitehead’s notion of a region presupposes the notion of a surface. It
seems quite evident that what he really does is to enclose a portion of space
by a surface vvhich is then taken to be aregion, and, vvhat is more, he takes
a surface to be complete, i.e., sufficient to enclose a region, and vvithout
any holes in it. This is evidenced by the follovving fact.

In the explanatory note appended to Chapter Il of Part IV, Whitehead
says that ‘a certain determinate boundedness is required for the notice
of a region’ and further that ‘[t]he inside of a region, its volime, has a
complete boundedness denied to the extensive potentiality external to it.’

If we conceive of a determinate portion of space, i.e.,, of a (spatial)
region, then no doubt we can conceptually separate it from its
neighbourhood. But, if the notion of a surface as something having no
extension in one of the region’sdiremsions is not already given, it cannot
be used to enclose a region. That is, the region, vvithout the notion of a
surface, can be quite determinate, but it is not obliged to comprehend ali
of the space that vvould ordinarily be said to be included in aregion defined
by a holeless and complete surface. We have seen that YVhitehead assumes
that there cannot be a hollovv region, an assumption quite sufficient by
itself to shovv that by the term ‘region’ W hitehead means a region enclos-
ed by a holeless and complete surface.

2 W hitehead’s definiton of a pointis infructuous. That is, his defini-
tion does not enable us to decide vvhether a given entity is or isnot a point.

The abstraction of the point from the region depends on the notion
of one abstractive set, A, covering another abstractive set, B, but VVVhitehead’s
definition of ‘covering’does not enable us to establish vvhether A does or
does not cover B for two reasons: (a) because of the infinitude of regions
composing an abstractive set, and (b) because an abstractive set is not yet
knovvn to converge to anything.

(@) Any abstractive set consists of an infinity of regions. According
to VVhitehead’s definition, set A vvould be said to cover set B vvhen every
member or A includes some member of B, i.e.,, vwhen same member of B
isa (proper) part of any given member of A. But, there is no way in vvhich
we can establish that every member of A, say, a, b, c, ..., includes some
member of B: we cannot inspect each member of A individually to see
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whether or not it includes same member B because of their infinity, not
does Whitehead prescribe any rule to establish generally that any member
of the class of the orders of A must or does include some member of B.
Nor is there any method to establish that every member of Bis a (proper)
part of some member of A for the same reasons, viz., because of the in-
finity of members of B, each of its members cannot be individually in-
specied, and Whitehead does not offer any general rule to establish that
any member of the class of regions constituting B must or is included in
some member of A.

(b) If it were known that abstractive sets A and B both converge to,
say, point p, then we could assert that any member of A must include some
member of B and that any member of B must include some member of
A. For, othervvise, A and B both could not converge to point p. If A con-
verges to p and B converges to another point g, then there are regions
containing p which do not contain g, and there are regions containing
g which do not contain p, and, hence, A would have members which do
not include any member of B, and B would have members which do not
include any member of A. But, at the stage of deciding whether or not
A covers B, we are supposed to have no ides of a point, and even if A is
actually converging to p we are supposed to be ignorant of this fact. Thus,
it is evident that Whitehead does not provide us with any means for
establishing whether or not A covers B.

Now, as we have not been enabled to decide whether A does or does
not cover B, it is evident that the definition of equivalence of abstractive

sets is merely hypothetical, as opposed to categorical, and, as such, is of
no use.

An abstractive set A is said to be equivalent to another abstractive set
B when A covers B and B covers A. But, we have no means of establishing
whether A does or does not cover b or vvhether B does or does not cover
A. Ali that can therefore be said is that if A does cover B and B does cover
A, then A and B are equivalent.

Since we have no means of establishing whether the abstractive sets
A and b are equivalent, we have no means of arriving at a (complete) group
of abstractive sets that are equivalent to one another and are not equivalent
to any abstractive set not included in the given group. That is, if we have
a group of abstractive sets given to us, then Whitehead’s method does not
enable as to decide whether or not it is a group of equivalent abstractive
sets, or, in other words, we have not been provided with the means deciding
whether or not a given group of abstractive sets is a point, line or surface.
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Afortiori, since we have no means of arriving at a complete group of
equivalent abstractive sets, we have no means of discovering whether one
complete group of equivalent abstractive sets is or is not incident in
another, whatever the term ‘incident’ day mean. Now, a complete group
of abstractive sets M is said to be incident in another such group N when
every member set of N covers every member set of M but no member set
of M covers any member set of N. Since it cannot be decided whether any
given member set of N covers any member set of M, no question of
establishing whether M is or is not incident in N arises. Hence, it cannot
be decided whether a given entitly is or is not a point. In other words,
even if we chance to be presented with a complete group of abstractive
sets (or a ‘geometrical element’in VVhitehead’s terminology) in which no
other geometrical element is incident —i.e., even if we chance to be
presented with what is a point in VVhitehead’s terminology— we shall have
no means of deciding whether the given entitly is or is not a goint.

Ak thus clearly see that VVhitehead’s definition of a point is infruc-
tious, and, as such, his method fails to define the point in terms of regions
and extensive connections between them.

A person may, however, seek to defend VVhitehead’s method by say-
ing that it does not matter that we cannot decide whether or not the abstrac-
tive set A covers the abstractive set b, ali that we need are the notions of
one set of regions covering another set, two abstractive sets being
equivalent, and a geometrical elementbeing incident in another, and once
we have been imparted the notion of a point it should suffice for our
purposes.

This, we feel, isnot a good defence. The definition ofan apple should
enable us to decide vvhether or not a given entity is an apple, or, in other
vvords, the definition should define appleness. If an attempted definition
fails to capture appleness, and, as such, fails to enable us to decide vvhether
a given entity is or is not an apple, then it is no definition. If the attemp-
ted definition ofa point fails to enable us to decide vvhether a given entity
is or is not a point, then it is evident that the definition has failed to cap-

ture or define point-ness.

3 VVhitehead’s definition of a point as a certain complete group of
equivalent abstractive sets is necessary but no group ofequivalent abstrac-
tive sets can be complete.

The qualification of completeness is necessary because othervvise it
vvould have been possible that a given group ofequivalent abstractive sets
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Is point p and another group of equivalent abstractive sets is point q but
the members of p and g are equivalent and, hence, either a distinction
would have to be drawn between the two groups, which seems impossible,
or a rule would have to be laid down that p and g are the same, which
in effect would amount to the completeness of the group.

The qualification of completeness is impossible of because no group
of equivalent abstractive sets can be complete. It is evident that no finite
collection of equivalent abstractive sets can be complete, since no matter
how many such sets have been taken, there will stili be some other set which
is equivalent to each member of the collection but is not itself a member
of this collection. The reason is that space is ex hypothesi infinitely divisi-
ble and hence given any two equivalent abstractive sets there is a third
which is equivalent to both and in a sense lies between them. (Suppose
we take set S1 =R1, R2 Ra,..., R, ,and setS2=El, E2 E3...,, E,,..., such that
Ri1 constains E1 and E! contains R2 and so on. Then there is an abstractive
set S3=F,, F» Fs... such that RiI contains FbFt contains EiI and EI contains
R2 and so on.) This means that given any abstractive set S, there are in-
finitely many abstractive sets that are equivalent to S. But there can be
no infinite group or collection ofanything, i.e., no determinate collection
or group of anything can be infinite. (This point will be elaborated later
in connection vvith the question vvhether ‘an infinite set of points’has any
meaning; please see sub-section ii.)

4 Above ali, Whitehead’s ‘point’ does not ansvver to vvhat we cali a
point.

We may not be able to State vvhat we mean by the vvord “point” beyond
vvhat has been said by Euclid, but, I believe, we ali mean the same thing
(othervvise there vvould have been no geometry), and certainly vvhat we
mean by this vvorld is not a complete group of equivalent abstractive sets
ofregions in vvhich no other such group is incident (and vvhose member
sets vvorld ordinarily be said to converge to a point). C.D. Broad says that
we must not be aghast at finding that the point had turned out to be dif-
ferent from vvhat we had expected it to be.b6 Indeed, if we had supposed
a ball to be made of iron and on analysis found out that it was made of
silver, or we supposed the ball to be spherical and found out that it was
made of silver, or we supposed the ball to be spherical and found out that
it was oblong, then we ought not to be aghast at our finding. But, here

45 Scientific Thought, p. 43.
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we do not begin by assuming that the point is given and on analysis is
discovered to be different from what we had expected it to be. Here, we
believe we know what a pointis and if we find that we are being presented
with something different then we can at least say, “Well, your ‘point’is
different from ours”. The crucial test here, as Broad rightly observes, is
to see if Whitehead’s ‘point’can do for our point, and, we see that we can-
not replace the definiendum (the ordinary word “point”)in geometrical
sentences by the definiens of Whitehead’s definition of a point (a com-
pleted group of equivalant abstractive sets in which no other such group
IS incident).

This point may be seen in connecdon with the convergence to a point.
We can easily understand the convergence of a pair of lines to a point,
but we can make no sense of the convergence of two given complete loci
of complete groups of equivalent abstractive sets to a certain understand
what the word ‘convergence’ can mean in this context.

This point may be, further seen in connection with YVhitehead’s defini-
tion of being situated in aregion. Itisfor us a truism that a point is situated
in a region. But we do not comprehend what is meant when we are told
that a certain group of equivalent abstractive sets of regions is said to be
‘situated’in aregion when that region isa member of one of the abstrac-
tive sets which compose that group of equivalent abstractive sets. Shorn
of its technicalities, the definition telis us that a group of abstractive sets
ofregions is situated in any region which isa member of any of the abstrac-
tive sets of regions included in the group in question. We feel that ‘to be
situated in aregion’as used by Whitehead does not mean what we mean
when we say that a point is situated in aregion. The gulf between the two
usages appears to widen when acomplete group of equivalent abstractive
sets of regions is said by YVhitehead to be situated in the surface ofaregion
which is a member of one of the given abstractive sets of regions.

In short, a group of abstractive sets of regions is not a point (as or-
dinarly conceived) but merely a route or pointer to a point. It is unques-
tionably a better route or pointer than any that we have hitherto had, for
example, better than the attempt to arrive at a point by dividing and sub-
dividing aregion. Ali the same, agroup of abstractive sets isonly a pointer
or route to a point, nota pointin itself. This, YVhitehead had himself con-
ceded in an earlier work, when he said:

There isno one event which the serios [of events forming an abstrac-
tive class] marks out, but the series itself is a route of approximation
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towards an ideal simplicity of content.&6 A route of approximation towards
an ideal simplicity o f'content’, it is submitted, is not itselfan ideal simplici-
ty of content.

We may put this argument as follows. If we knew what the word ‘point’
meant and were looking for point/» then Whitehead’s method would uner-
ringly take us to point/) and to no other point. That is, if we were in search
of aroute to p then nothing | know of could provide a better route top
than this method, for, it is by taking p as the point of departure that the group
of abstractive sets has infact (through not supposely in theory) been arrived at.

However, if we are innocent of the notion of a point then despite
guiding us tovvards point p by making sure that we do not by any chance
wander on to any other point or to anything else ofa different nature such
as a line, VVhitehead’s method completely fails in yielding a point. What
we have is a set of overlapping regions which become smaller and smaller
indefinitely, and beckon a person wise to the situation tovvards p and leave
an ignoramus like myself greatly baffled.

To sum it up, if we had to represent a point by something so that we
could retain the distinction betvveen points pxand p2 then groups of
equivalent abstractive sets could be used for this purpose: the distinction
vvould be retained in as much as group g2cannot lead to p2 gi being a
route of approximation to pxand g2being a similar route to p2 But if we
desired to have something equivalent to vvhat we cali a point, or, vvhat is
the same, if we desired to learn vvhat the vvord ‘point’ means, then the ex-
pression ‘a complete group of equivalent abstractive sets of regions in
vvhich no other group of equivalent abstractive sets of regions isincident’
iIs not equivalent to the vvord ‘point’ it does not teli us vvhat a point really
is. If so, Whitehead fails to define a point, and, afortiori, fails to derive the
point from the region.

5) Y Vhiteheadjumps from the region to the point directly instead of
deriving the surface from aregion, a line from a surface, and a point from
a line.

If Whitehead had succeeded in deriving the point from the region
then this objection vvould have been pointless, although, even in that case,
it vvould have pointed out an aesthetic infelicity.

46 An Enquiry Concerning the Principles of Natural Knoivledge, reprint, Cambridge, 1955, p.
104. In the Concept of Nature (reprint, Cambridge, 1971), Whitehead says, ‘Thus an abstrac-
tive element is the group of routes of approximation to a definite in trinsic character of ideal
simplicity to be found as a limit among natural facts.’
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If fine, we see that in spite of taking advantage of the infelicity ofjum-
ping directly from the region to the pointand of having sameness of con-
vergence without there being a convergence to, Whitehead fails to find
a non-circular method for defining the point.

In addition, it may be pointed out, VVhitehead’s method fails to derive
the line from the point, if it is assumed that his ‘point’is our point, and
his ‘line’is our line. (Otherwise, it would suffice to say that his ‘point’and
‘line’ are not our point and line.)

Insofar as the derivation of the line, surface and volime is concern-
ed, there is no difference between Whitehead and modern mathematicians
-both derive the line, surface and volime from the point— and the
arguments which can be urged against the one can be urged against the
other.

(@) First of ali, it seems strange that a magnitudinous whole should
consist of magnitudeless parts. This difficulty is overcome by
distinguishing between ‘components’and ‘constituents’47Even so, it seems
strange that a set of things each one of which is of zero magnitude should
give rise to something that has positive magnitude.

Strange though it seems, this is what the mathematicians, Dedekind
and Cantor in particular, are supposed to have succeded in doing. If S
be a set of points such that for any value of x, if x isa point on line-segment
| then x is a member of S and if there is no x such that x is a member
of S but does not lie in 1 then the members of Sordered in the manner
they occur in 1lwould be equivalent to 1 Thus, ali we need to do to dissolve
the line-segment into a set of points is to find a set vvhich has the property
of set S. Nowv suppose that the line segment 1is of the length of one cen-
timetre. Let PDbe the first point or 1, and pt be the last point of 1 Now,
any point p,, on 1can be defined in terms of its distance from PO e.g., if
p,, iIs ata distance of 0.4. centimetres then werepresent it by p.4. Hovvever,
this is not sufficient to derive the line. We have to determine the relations
that subsist betvveen the points vvhen they form a line. Dedekind and Can-
tor, therefore, endeavoured to determine vvhat characteristics the suppos-
ed set of points S has. Nowv, the first characteristic of points is that no two
points are consecutive. So, no two members of S may be consecutive if set
outin the order of increasing (or decreasing) magnitude of their subscripts.
Secondly, every pointis an end-point of some sub-segmentor 1, and every

47 C.D. Broad, Scientific Thought. p. 330.
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sub-segment or 1is such that an omega-sequence of points can be obtain-
ed having as its ‘limit’ the end-point of that sub-segment. So, every subset
of S must contain a progression of members and the limits of such pro-
gressions must he members of the set S. Thirdly, if Pmand P,, be any two
members of S and if m and n be rational numbers, then there must be
a member of S, say Pr such that r is an irrational number greater than
m and smaller than n, and conversely, if m and n are irrational numbers,
then there must be a Pr such that r is a rational number greater than m
and smaller than n. Given these conditions, to run through the members
of Sin the ascending order of magnitudes would be tantamount to runn-
ing through 1from POto pj.48

Thus, the objection seems to have been overcome: we see how a line
having a positive magnitude can be dissolved into points, or if you like,
how can magnitudeless points give rise to a line.

However, it seems to me that the line is not done away with complete-
ly. Of course, the obvious objection that each point was defined in terms
of its distance from a given point and that no definition of distance’ in
terms of points alone had been given, would be based on a mistake. In
order to show that a line can be analysed in terms of points, the points,
were initially defined in terms of distances, but once we see that an
equivalence can be established between set S and line 1, we can take the
points independently of distances and in themselves: if the members of
S have the three characteristics given above they give rise to a continuum
of points. However, no rule appears to have been given to distinguish bet-
ween the lengths of two continua of points. That is, since any continuum
of points has a non-denumerable infinity of points, their magnitudes can-
not be differentiated by the number of points. Indeed, in some cases,
magnitudes of continua can be differentiated, e.g. where one is a part of
the other, but, even in such cases, the ratios betvveen the two can be work-
ed out only by taking some continuum as the unit of comparison, which
in effect means that some linesegment, in itself and quite independently
of the points supposedly constituting it, would be adopted as the unit of
measurement.

Mathematicians’ inability to do away with the line completely is fur-
ther exhibited by the phenomenon of motion. On the infinzer-atomicity

43 R. Dedekind, Essays on the Theory of Numbers (tr. WW. Beman), New York: Dover, n.d.,

esp. pp. 3-21; G. Cantor, Coritributions to the Founding of the Theory of Transfinite Numbers (tr.
P.E.B. Jourdain), New York, 1915.
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hypothesis adopted by modern mathematicians, as clearly avowed by Ber-
trand Russell, motion consists in being in different places at different times
and in intermediate places at intermediate times, but there is no next place
to be in at the next moment for the simple reason that there is no next
place or next moment. Thus, in respect of a partide of matter, motion
consists in its being in one point at one moment and in another point
at a later moment. But the partide can never be in an adjacent point, for,
no two points are adjacent. But, if so, how can the partide succeed in be-
ing in a different point at any later moment? The real answer is that the
partide continuously moves along the line and thereby succeeds in being
in a different point. The fact that there is an infinity of points between
points p and q is of no help. It only helps in making the jumps’nearer;
it does not enable the partide to be in an adjacent point. Thus, it is clear-
ly seen that motion must consist in traversing the line and cannot consist
only in being in different points at different moments. In other words,
we do not succeed in resolving a line-segment into a set of points.

The fact that the line has not been completely done away with is also
shown by the fact that the points are not supposed to constitute a discrete
set, they are admitted by mathematicians to be a continuous set, or, in other
words, no two points can be taken individually —they are the end-points
of a line— segment.

2 Moreover, there isa more fundamental objecdon to the mathemati-
cians’ assumption, namely, that there is no set of terms which could be
the set S, or in other words, that ‘set S’ is not a ‘set of terms’ but only a
formula for generating terms, and a formula which isin principle incapable
of yielding any given set of terms. We have argued this point elsewhere;®
here we present a summary of our argument.

That what we have called ‘set S’cannot be a collection of terms is quite
clear, since an ‘infinite collection’ is a contradiction in terms.

But ‘set S’ cannot be a class of terms either. It is true that the world
‘class’ is ordinarily used quite ambiguously so that we have both a defin-
ing property and the terms which have that property. And it is this prac-
tice which has given rise to the problem of universals. We are here using
the world differently. We are so using the world that a given aggregation
of terms each of the same sort or kind constitutes a collection and not a
class, so that a class can stand in relation only to other classes and cannot

4N F.A. Shamsi, “Infinzer-atomicity”. The Pakistan Philosophical Journal, XI1I, no. 3 (Oc-
tober 1975), pp. 47-84, and X1V, no. 2 (Jan.-June 1976), pp. 34-72.
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be said to have an a number of members no matter what n may be and
no matter how many entities be known to have the defining property of
the given class. Moreover, the property that defines a class must be general
and must not in any manner be restricted. That is, restriction on a class
must come only from an additional qualification being imposed which
must itself be general. Thus, there can be a class of animals and a class
of points, but there cannot be a class of animals living in Pakistan or a
class of animals existing in the 19th century; similarly there can be no class
of points lying in this solid or that line-segment. For, ‘living in Pakistan’
or ‘lying in that line-segment’ are not general attributes or properties. If
so, there can be no such class as the class of points between points pmand p,,.

Let us suppose that ‘set’means something different from a collection
and a class. What will the expression ‘ali the members of S’ now mean?
If S vvere a collection, it vvould have meant xt, x2, x3..., X,,; but, Sis not a
collection. If S vvere a class, it vvould have meant the vvhole class to the
exclusion of no sub-class; but Sis not a class. What then can the expression
In question signify? To me, it signifies nothing except the obstinate desire
to do the impossible —to derive the line from the point.

(3) Finally, it appears to me that mathematicians took the vvrong course
in relating the line and the point: it is the point vvhich is to be derived
from the line and not the line from the point. Mathematicians thus not
only reify the point, they completely fail to understand the nature of a
point. A point is a potential division of a line just as a line is a potential
division of a surface, and a surface that of a solid. To talk of ali the points
of 1is thus to talk of ali the divisions of 1, and to equate a set of points
wvith lis to equate a set of divisions or 1vvith land to hold that line-segment
1is nothing but ali the divisions or 1 In a sense, the equation is true. If
there issuch a thing as ‘ali the divisions or 1then no matter hovv disparate
the category of ‘divisions’ and ‘line-segments’ may primafacie appear to
be, nothing vvould be left in 1if ali its possible divisions vvere obtained.
Hovvever, ‘li the divisions or I, though it very much looks like ‘ali the boys
in this room’ has at best the same status as ‘ali men’ and any attribute
predicated of it must be analytic, i.e. the predicate must be a component
of the complex of defining properties. But vvhen we claim that ‘ali the divi-
sions or lare given’then ‘being given’does not at ali seem to be aproper-
ty of ‘the class of divisions of I’ (even assuming it to be a class).

Furthermore, Whitehead fails to define a straight segment. He defines
a straight segment in terms of, inter alia, an ‘ovate’ abstractive set vvhich
he has not been able to define.
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W hitehead begins by mentioning what he calls an ‘oval’ region and
contrasts it with a non-oval region in avery vague and ambiguous fashion.
He claims that it is evident that two (as yet undefined) oval regions can on-
ly overlap with unique intersection. | do not profess to understand what
he means. In the literal sense of the word, a region would be called oval
iIf it had the shape of an egg, and a region which did not have this shape,
for example, a sphere, an obelisk or a pyramid, would be called a non-oval
region. If so, why two oval and not two non-oval regions should overlap
with unique intersection is by no means evident to me. YVhitehead fur-
ther says that any non-oval region overlaps some oval regions with multi-
ple intersection, from which it appears as if some oval regions may not
overlap any non-oval region with multiple intersection. Even so, we fail
to have any definite idea of an oval region or of the distinction betvveen
an oval and a non-oval region.

Y Vhitehead holds that a class of ovals can be defined although a single
oval cannot be defined. It is submitted that this expression is logically in-
appropriate. An individual can be described, possibly, exhaustively describ-
ed, but cannot be defined. A class of things can be defined but if a class
is defined than every individual which belongs to that class can be
distinguished from any other individual not belonging to that class. The
cat called Pussey cannot be defined, it can only be described; the class of
cats can be defined, which only means that cat-ness or the properdes which
a thing must posses in order to qualify to be called a cat can be exhausdvely
enumerated. Thus, ifitwere possible to define a class of ovals, then it would
be possible to say what an oval was. But, YVhitehead, in saying that a single
oval cannot be defined, meant to say that it was not possible to State what
characteristics a region must possess to be called an oval. If so, in a logically
proper sense, it was not possible to define the class of ovals. Thus, we may
take it that in claiming that the class of ovals was definable, what W hitehead

really meant to say was that without defining the terms ‘oval’ and ‘non-
oval’ a set of protocol proposidons could be laid down stating relations
between these terms which could lead us to divine in what senses the two
terms might have been used.

Y Vhitehead further confuses the issue by saying, “..we cannot define
a single oval, but we can define a class of ovals. Such a class will be called
‘ovate”” At first sight, this decision seems to be senseless: why not persevere
with the term ‘oval’, why bring in yet another undefined term? But, on
reflection, we see that YVhitehead is not using the word “class” to mean
things of the same kind in general, i.e., things having common charactistics
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whether or not there actually be a thing having the characteristics in
qguestion-in short, in a sense in which the notion of a null class is not a
contradiction in terms. Hence, it would seem that by “ovate” he means
that group of ovals which can be defined. This makes sense, but makes
the notion of an oval even more confusing and out of our reach.

Coming to the ovate tlass’; what W hitehead does is to teli us what rela-
tions two ovate regions must bear to one another, what relations an ovate
region must bear to some non-ovate region, what relations a non-ovate
region must bear to some ovate region, and that there are ovate abstrac-
tive sets. This is indeed no way of defining what an ovate region is. But,
let us try to see what picture of an ovate region emerges from the protocol
propositions.

First of ali, an ovate region is not necessarily oval in shape. For, a sphere
satisfies both the abstractive and non-abstractive conditions laid down by
W hitehead. Going 6ver the conditions of the two groups, we came to the
conclusion that what Whitehead may have had in mind is what we may
cali a ‘regular’region, i.e., a region bounded by a ‘regular’ surface and
comprehending ali that lies within that surface. In other words, a region
having a surface free from ali protuberances and depressions and whose
interior is free from ali gaps or hollowness. We arrive at this conclusion
from the fact that two regular regions, neither of the two having any pro-
tuberance or depression, can overlap only in a single, condnuous stretch,
vvhereas a regular region vvith some non-regular region and a non-regular
region vvith some regular region must overlap vvith multiple intersection.
And the surfaces of any two regular regions must meet either in a point
or in a continuous set of points, that is, in a line or a surface, vvhereas a
regular surface and some irregular surface, and, similarly, an irregular
surface and some regular surface, must meet in a non-continuous set of

points, i.e., in a group of points vvhich do not by themselves a line or a
surface.

Although we cannot be definite that this is vvhat VVhitehead must have
meant by an ‘ovate’region, | feel that we cannot be far vvrong in our belief,
for, for purposes of extensive abstraction the notion of a regular region
Is indispensable. Hence, we may at least tentatively assume that by an ovate
region Whitehead must have meant a regular region.

Nowv, if VVhitehead did really mean by an ovate region vvhat we have
designated a regular region, then it is ali too clear that, instead of
endeavouring to determine the essential properties of a regular region
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and defining a regular region in terms of those properties, Whitehead
only seized upon two characteristics of pairs of regular irregular
regions/surfaces, namely, those of unique/multiple intersection and of in-
tersecting in agroup of points forming/not forming a line or surface, and
tried to ‘define’ the regular region in terms of these two non-essential
characteristics of pairs of regular/irregular regions/surfaces, I.e.,
characteristics which cannot be used to define the term ‘aregular region’,
for, these properties characterize relations between two regions/surfaces,
and, consequently, completely failed to define a regular, or in his own ter-
minology, an ovate, region.

Thus, even though VVhitehead’s definition of a straight segment is such
that the uniqueness of a straight segment is immediately deducible from
the definition itself, which is clearly an improvement on the traditional
treatment, this definition does not succeed in defining a straight segment
since Whitehead had not succeeded in defining an ovate region even if
he isregarded as having succeeded in telling us what he meant by an ‘ovate’
region. (Itis to be noted that although our description ofaregular region
as ‘aregion whose surface is free from ali protuberances and depressions
and whose interior is free from ali gaps or hollowness” seems quite clear
and intelligible, if the notion of a point has not already been defined,
means nothing. To become meaningful, the words ‘protuberance’ ‘depres-
sion’, ‘gap’or “hollowness’will have to be defined without resorting to the
notion of a point. When we try to do so, we find it very difficult even to
distinguish between the surface and the interior of a region!)

Since, in our opinion, Whitehead has failed to derive the line-segment
from the pointand to define a straight segment, it follovvs that he has fail-
ed to derive the surface and volime from the point and has failed to define
a plane, if 'surface’, ‘volume’and ‘plane’ mean what we mean by them; other-
wise, his ‘surface’ ‘volume’ and ‘plane’ cannot do the worse our surface,
volime and plane do in geometry.

Now that we come to the conclusion that VVhitehead’s method of ex-
tensive abstraction did not succeed in deriving the point, and in deriving
the line and the surface, from the region (the latter two via the point),
or in defining a straight line or a flat surface, must we regard this method
as a historical curiosity, as yet another instance of an aberration of the
kind human mind afford sample evidence of being prone to? I think that
the answer is an emphatic “no”.

Solutions of most philosophical problems have only been possible by
the trial-and-error method after manv false leads had been thoroughly
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worked through. When, finally, a definitive solution is arrived at, ali the
earlier attempts at polution are seen to be complements of the actual solu-
tion without which such a solution could hardly have been possible. Even
though a failure in the ultimate analysis, the very fact that such an attempt
was made is in itself of immense value. In attempting to derive the point
from the region. VVhitehead’s method is on the right track: we are cer-
tainly not born wvith the notion of a point, and, hence, it is obvious that
weacquire it by some such sub-conscious process as VVhitehead’s method.
The final solution of this problem wvill be arrived at by the same rigorous
logical method of beginning vvith a feww underfined notions embedded in
sense perception and a few universally acceptable axioms.

It is clear that the notions of tangential and non-tangential inclusion
will prove helpful in any attempt at extensive abstraction. If the notions
of point, line and surface are. not given, then to be able to ensure that a
given region isaplenum i.e., to ensure that a given outer surface encloses
the entire region vvhich vvould ordinarily be taken as enclosed vvithin it
the notion of non-tangential inclusion will be found to be of crucial im-
portance.

The method ofrigorous deduction, though not newv vvith VVhitehead,
is of the greatest value and the only logical method for the derivation of
the point from the interval. In relation to extensive abstraction,
VVhitehead’s was the pioneering endeavour and wvill ever be a beacon to
ali those vwho might attempt extensive abstraction in the future.

VVhitehead’s procedure in defining a straight segment, that is, in of-
fering a definition vvhich shovvs the straight segment’suniqueness among
the line-segments bounded by two given points was a vvonderful attempt
and one cannot but vvish that it had succeeded. VVhitehead had taken the
property of being the shortest distance as the crucial defining property
vvithout falling a prey to the circularity involved in other attempts to define
the notion of a straight line. It is clear that if the concept of straightness
Is ever to be caught hold of in a non-circular definition, that definition
will have to be such that either the property ofbeing the shortest distance
betvveen two points can be immediately deduced from the definition or
the concept ofbeing the shortest distance betvveen two points can be defin-
ed vvith the help of the defined notion of a straight segment.

In short, we ovwe a debt of gratitude to VVhitehead for his having at-
tempted to derive the point by extensive abstraction from a datum vvhich
was a deliverance of the only primary source of human knovvledge, sense
perception.



